1 Error Bounds

1.1 Concepts

1. The formula for the errors of integrating $\int_{a}^{b} f(x) d x$ are:

$$
E_{L}=E_{R}=\frac{K_{1}(b-a)^{2}}{2 n}, \quad E_{T}=\frac{K_{2}(b-a)^{3}}{12 n^{2}}, \quad E_{M}=\frac{K_{2}(b-a)^{3}}{24 n^{2}}, \quad E_{S}=\frac{K_{4}(b-a)^{5}}{180 n^{4}}
$$

where K_{i} is the maximum $|f(i)(x)|$, the i th derivative of f, is on the interval $[a, b]$.

1.2 Problems

2. True FALSE For calculating the error bound when using left endpoint method when approximating the integral of f on the interval $[a, b]$, we use $K_{1}=f^{\prime}(a)$.

Solution: We define K_{1} to be the maximum of $f^{\prime}(x)$ on the interval $[a, b]$. This may occur at a but that is not necessary.
3. True FALSE The error bound gives us what the exact error of using the different approximation techniques are.

Solution: The error bounds, as their name suggests, just allow us to bound the error. The actual error may be less than the bound (or even 0 as seen in question 1).
4. True FALSE If the second derivative is negative, then the Trapezoid rule and midpoint rule both underestimate the true area.

Solution: The Trapezoid rule will underestimate the area while the midpoint rule will overestimate it.
5. True FALSE If the first derivative is positive, then the left endpoint and right endpoint method both underestimate the true area.

Solution: The left endpoint method would underestimate the area and the right endpoint would overestimate it (think about $y=x$).
6. How many intervals do we need to use to approximate $\int_{1}^{2} x^{2} d x$ within $0.001=10^{-3}$ using the midpoint rule? Trapezoid rule? Simpson's rule?

Solution: We take the error bound equation, set the error to be our desired bound, and solve for n. So for example, for midpoint rule, we have that $K_{2}=\max |22|$ on the interval $[1,2]$, which is just 2 so $K_{2}=4$ and we have

$$
E_{M}=10^{-3}=\frac{K_{2}(b-a)^{3}}{24 N^{2}}=\frac{2}{24 N^{2}} \Longrightarrow N=\sqrt{\frac{2000}{24}}=9.128 .
$$

When we are asking for the minimal number of intervals, we need an integral number and hence we take the ceiling 10 because anything greater than 9.128 gives us a good bound, and 9 does not.
The table is shown below:

Error	E_{L}	E_{R}	E_{M}	E_{T}	E_{S}
0.01	201	201	4	5	2
0.001	2001	2001	10	14	2
0.0001	20001	20001	30	42	2

7. How many intervals do we need to use to approximate $\int_{0}^{1} \cos (2 x) d x$ within $0.001=10^{-3}$ using Simpson's rule?

Solution: We have $f^{\prime}(x)=-2 \sin (2 x)$ so $K_{1}=2, f^{\prime \prime}(x)=-4 \cos (2 x)$ so $K_{2}=4$, and $K_{4}=16$.

Error	E_{L}	E_{R}	E_{M}	E_{T}	E_{S}
0.01	101	101	5	7	4
0.001	1001	1001	14	19	4
0.0001	10001	10001	42	59	6

8. How many intervals do we need to use to approximate $\int_{0}^{2} e^{2 x} d x$ within $0.001=10^{-3}$ using Simpson's rule?

Solution: We have $f^{\prime}(x)=2 e^{2 x}$ so $K_{1}=2 e^{4}$ and $f^{\prime \prime}(x)=4 e^{2 x}$ so $K_{2}=4 e^{4}$ and $K_{4}=16 e^{4}$.

Error	E_{L}	E_{R}	E_{M}	E_{T}	E_{S}
0.01	21840	21840	86	122	12
0.001	218394	218394	271	383	22
0.0001	2183927	2183927	854	1208	36

9. How many intervals do we need to use to approximate $\int_{-1}^{1} x^{3} d x$ within $0.001=10^{-3}$ using Simpson's rule?

Solution: We use $K_{1}=3, K_{2}=6, K_{4}=0$.

Error	E_{L}	E_{R}	E_{M}	E_{T}	E_{S}
0.01	601	601	15	21	2
0.001	6001	6001	46	64	2
0.0001	60001	60001	142	201	2

10. How many intervals do we need to use to approximate $\int_{1}^{3} \ln x d x$ within $0.001=10^{-3}$ using Simpson's rule?

Solution: We use $K_{1}=K_{2}=1$ and $K_{4}=6$.

Error	E_{L}	E_{R}	E_{M}	E_{T}	E_{S}
0.01	201	201	7	9	4
0.001	2001	2001	19	27	8
0.0001	20001	20001	59	83	12

11. How many intervals do we need to use to approximate $\int_{1}^{2} x e^{x} d x$ within $0.001=10^{-3}$ using Simpson's rule?

Solution: We use $K_{1}=3 e^{2}, K_{2}=4 e^{2}, K_{4}=6 e^{2}$.

Error	E_{L}	E_{R}	E_{M}	E_{T}	E_{S}
0.01	1109	1109	12	17	4
0.001	11085	11085	36	51	6
0.0001	110837	110837	112	158	8

12. How many intervals do we need to use to approximate $\int_{1}^{4} \sqrt{x} d x$ within $0.001=10^{-3}$ using Simpson's rule?

Solution: We use $K_{1}=\frac{1}{2}, K_{2}=\frac{1}{4}, K_{4}=\frac{15}{16}$.

Error	E_{L}	E_{R}	E_{M}	E_{T}	E_{S}
0.01	226	226	6	9	4
0.001	2251	2251	18	25	8
0.0001	22501	22501	54	76	12

