1 Error Bounds

1.1 Concepts

1. The formula for the errors of integrating $\int_a^b f(x) dx$ are:

$$E_L = E_R = \frac{K_1(b-a)^2}{2n}, \quad E_T = \frac{K_2(b-a)^3}{12n^2}, \quad E_M = \frac{K_2(b-a)^3}{24n^2}, \quad E_S = \frac{K_4(b-a)^5}{180n^4},$$

where K_i is the maximum $|f^{(i)}(x)|$, the *i*th derivative of f, is on the interval [a, b].

1.2 Problems

2. True **FALSE** For calculating the error bound when using left endpoint method when approximating the integral of f on the interval [a, b], we use $K_1 = f'(a)$.

Solution: We define K_1 to be the maximum of f'(x) on the interval [a, b]. This may occur at a but that is not necessary.

3. True **FALSE** The error bound gives us what the exact error of using the different approximation techniques are.

Solution: The error bounds, as their name suggests, just allow us to bound the error. The actual error may be less than the bound (or even 0 as seen in question 1).

4. True **FALSE** If the second derivative is negative, then the Trapezoid rule and midpoint rule both underestimate the true area.

Solution: The Trapezoid rule will underestimate the area while the midpoint rule will overestimate it.

5. True **FALSE** If the first derivative is positive, then the left endpoint and right endpoint method both underestimate the true area. **Solution:** The left endpoint method would underestimate the area and the right endpoint would overestimate it (think about y = x).

6. How many intervals do we need to use to approximate $\int_{1}^{2} x^{2} dx$ within 0.001 = 10⁻³ using the midpoint rule? Trapezoid rule? Simpson's rule?

Solution: We take the error bound equation, set the error to be our desired bound, and solve for n. So for example, for midpoint rule, we have that $K_2 = \max |22|$ on the interval [1, 2], which is just 2 so $K_2 = 4$ and we have

$$E_M = 10^{-3} = \frac{K_2(b-a)^3}{24N^2} = \frac{2}{24N^2} \implies N = \sqrt{\frac{2000}{24}} = 9.128$$

When we are asking for the minimal number of intervals, we need an integral number and hence we take the ceiling 10 because anything greater than 9.128 gives us a good bound, and 9 does not.

The table is shown below:

Error	E_L	E_R	E_M	E_T	E_S
0.01	201	201	4	5	2
0.001	2001	2001	10	14	2
0.0001	20001	20001	30	42	2

7. How many intervals do we need to use to approximate $\int_0^1 \cos(2x) dx$ within $0.001 = 10^{-3}$ using Simpson's rule?

Solution: We have $f'(x) = -2\sin(2x)$ so $K_1 = 2$, $f''(x) = -4\cos(2x)$ so $K_2 = 4$,
and $K_4 = 16$.

Error	E_L	E_R	E_M	E_T	E_S
0.01	101	101	5	7	4
0.001	1001	1001	14	19	4
0.0001	10001	10001	42	59	6

8. How many intervals do we need to use to approximate $\int_0^2 e^{2x} dx$ within $0.001 = 10^{-3}$ using Simpson's rule?

Solution $K_4 = 16\epsilon$		e f'(x) =	$2e^{2x}$ s	$K_1 =$	$= 2e^4$	and $f''(x) = 4e^{2x}$ so $K_2 = 4e^4$ and
Error	E_L	E_R	E_M	E_T	E_S	
0.01	21840	21840	86	122	12	
0.001	218394	218394	271	383	22	
0.0001	2183927	2183927	854	1208	36	

9. How many intervals do we need to use to approximate $\int_{-1}^{1} x^3 dx$ within 0.001 = 10⁻³ using Simpson's rule?

Soluti	on: We u	se $K_1 =$	$3, K_2$	= 6, k	$X_4 = 0$
Erro	E_L	E_R	E_M	E_T	E_S
0.01	601	601	15	21	2
0.001	6001	6001	46	64	2
0.000	l 60001	60001	142	201	2

10. How many intervals do we need to use to approximate $\int_{1}^{3} \ln x dx$ within $0.001 = 10^{-3}$ using Simpson's rule?

Solutior	n: We us	se $K_1 =$	$K_2 =$	1 and	$K_4 =$	= 6.
Error	E_L	E_R	E_M	E_T	E_S	
0.01	201	201	7	9	4	
0.001	2001	2001	19	27	8	
0.0001	20001	20001	59	83	12	

11. How many intervals do we need to use to approximate $\int_{1}^{2} xe^{x} dx$ within $0.001 = 10^{-3}$ using Simpson's rule?

Solutior	n: We use	$e K_1 = 3e$	$^{2}, K_{2} =$	$=4e^{2},$	$K_4 =$
Error	E_L	E_R	E_M	E_T	E_S
0.01	1109	1109	12	17	4
0.001	11085	11085	36	51	6
0.0001	110837	110837	112	158	8

12. How many intervals do we need to use to approximate $\int_{1}^{4} \sqrt{x} dx$ within $0.001 = 10^{-3}$ using Simpson's rule?

Solutior	n: We us	se $K_1 =$	$\frac{1}{2}, K_2$	$=\frac{1}{4}, 1$	$K_4 =$
Error	E_L	E_R	E_M	E_T	E_S
0.01	226	226	6	9	4
0.001	2251	2251	18	25	8
0.0001	22501	22501	54	76	12